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A. Mathematical Proofs and Optimization

Derivation of shipment probabilities, equations (2), (3), and (4). Equation (2) is the
unconditional probability that origin city i is the cheapest source for good ω in destination city j.
Given the assumption of Weibull distributed costs in (1), the probability distribution for the cost
of delivering good ω from origin i to destination j is also Weibull,

Gij (c) = Pr [cij (ω) ≤ c]
= Pr [τijci (ω) ≤ c]

= 1− exp
(
−Ti (wiτij)

−θ cθ
)
.

Equation (2) is then derived exactly as in Eaton and Kortum (2002),

Pr

[
cij (ω) ≤ min

k
{ckj (ω)}

]
= Pr

[
cij (ω) ≤ min

k 6=i
{ckj (ω)}

]
=

ˆ ∞
0

Πk 6=i (1−Gkj (c)) dGij (c) .

We use the c.d.f. Gkj (c) = 1 − exp
(
−Tk (τkjwk)

−θ cθ
)

and the corresponding p.d.f. dGij (c) =

θTi (τijwi)
−θ cθ−1 exp

(
−Ti (τijwi)

−θ cθ
)
dc to get,

Pr

[
cij (ω) ≤ min

k
{ckj (ω)}

]
= Ti (τijwi)

−θ
ˆ ∞

0
Πk exp

(
−Tk (τkjwk)

−θ cθ
)
θcθ−1dc

= Ti (τijwi)
−θ
ˆ ∞

0
exp

(
−

(∑
k

Tk (τkjwk)
−θ

)
cθ

)
θcθ−1dc

= Ti (τijwi)
−θ

− exp
(
−
(∑

k Tk (τkjwk)
−θ
)
cθ
)

∑
k Tk (τkjwk)

−θ

∞
0

=
Ti (τijwi)

−θ∑
k Tk (τkjwk)

−θ .�

Equation (3) is the probability that origin i is the cheapest source for good ω in destination j,
conditional on j not sourcing good ω internally,

Pr

[
cij (ω) ≤ min

k 6=j
{ckj (ω)} |cjj (ω) > min

k 6=j
{ckj (ω)}

]
=

Pr [cij (ω) ≤ mink {ckj (ω)}]
Pr [cjj (ω) > mink 6=j {ckj (ω)}]

.

The numerator is given above (derivation of (2). For the denominator, following similar derivations,

Pr

[
cjj (ω) > min

k 6=j
{ckj (ω)}

]
= 1− Pr

[
cjj (ω) ≤ min

k 6=j
{ckj (ω)}

]
= 1− Tj (τjjwj)

−θ∑
k Tk (τkjwk)

−θ

=

∑
k 6=j Tk (τkjwk)

−θ∑
k Tk (τkjwk)

−θ .
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Taking the ratio to form a conditional probability, we have the proposed,

Pr

[
cij (ω) ≤ min

k 6=j
{ckj (ω)} |cjj (ω) > min

k 6=j
{ckj (ω)}

]
=

Ti (τijwi)
−θ∑

k 6=j Tk (τkjwk)
−θ .�

Equation (4) is the probability that destination j imports a given good ω from origin i conditional
on (a) j not importing from any lost city and (b) j not purchasing good ω internally. Conditions (a)
and (b) are satisfied if and only if minl∈L∪{j} {clj (ω)} > mink∈K\{j} {ckj (ω)}. We first characterize
the distribution of minl∈L∪{j} {clj (ω)},

Pr

[
min

l∈L∪{j}
clj (ω) ≤ c

]
= 1− Pr

[
min

l∈L∪{j}
clj (ω) > c

]
= 1−Πl∈L∪{j} Pr [clj (ω) > c]

= 1−Πl∈L∪{j} (1− Pr [clj (ω) ≤ c])

= 1−Πl∈L∪{j} exp
(
−Tl (wlτlj)−θ cθ

)
= 1− exp

−
 ∑
l∈L∪{j}

Tl (wlτlj)
−θ

 cθ

 ,

i.e. a Weibull distribution with shape parameter
∑

l∈L∪{j} Tl (wlτlj)
−θ. Given this distribution, we

can easily form the conditional probability (4), following the same steps as above,

Pr

[
cij (ω) ≤ min

k∈K\{j}
{ckj (ω)}

∣∣∣∣ min
l∈L∪{j}

clj (ω) > min
k∈K\{j}

{ckj (ω)}
]

=
Pr [cij (ω) ≤ mink∈K∪L {ckj (ω)}]

Pr
[
minl∈L∪{j} clj (ω) > mink∈K\{j} {ckj (ω)}

] =
Pr [cij (ω) ≤ mink∈K∪L {ckj (ω)}]

Pr
[
minl∈L∪{j} clj (ω) > mink∈K∪L {ckj (ω)}

]
=

Ti(τijwi)
−θ∑

k∈K∪L Tk(τkjwk)
−θ

1−
∑
l∈L∪{j} Tl(τljwl)

−θ∑
k∈K∪L Tk(τkjwk)

−θ

=

Ti(τijwi)
−θ∑

k∈K∪L Tk(τkjwk)
−θ∑

k∈K\{j} Tk(τkjwk)
−θ∑

k∈K∪L Tk(τkjwk)
−θ

=
Ti (τijwi)

−θ∑
k∈K\{j} Tk (τkjwk)

−θ .�

Derivation of moment condition (7) with multiplicative disturbance term, footnote 10.
We follow a lightly edited version of Eaton, Kortum, and Sotelo (2012), and add to the trade cost
function a multiplicative disturbance term drawn from a Gamma distribution,

τ−θij = µDistance−ζij νij , with νij ∼ Gamma

(
1

η2

αiDistance
−ζ
ij∑

k 6=j αkDistance
−ζ
kj

,
η2

αiDistance
−ζ
ij

)
.

Treating the ν’s as realizations from a random variable, we rely on the scaling property of the
Gamma distribution to obtain

αiDistance
−ζ
ij νij ∼ Gamma

(
1

η2

αiDistance
−ζ
ij∑

k 6=j αkDistance
−ζ
kj

, η2

)
.

The joint distribution of n Gamma distributed variables normalized by their sum is Dirichlet,(
· · · ,

αiDistance
−ζ
ij νij∑

k 6=j αkDistance
−ζ
kj νkj

, · · ·

)
i 6=j

∼ Dirichlet

(
· · · , 1

η2

αiDistance
−ζ
ij∑

k 6=j αkDistance
−ζ
kj

, · · ·

)
.
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Note that by definition of the Dirichlet joint distribution, all shares are in (0, 1) and they add up to
one. Using the definition for the mean of a Dirichlet distribution, we recover our proposed moment
condition (7),

E

[
αiDistance

−ζ
ij νij∑

k 6=j αkDistance
−ζ
kj νkj

]
=

1
η2

αiDistance
−ζ
ij∑

k 6=j αkDistance
−ζ
kj∑

l 6=j
1
η2

αlDistance
−ζ
lj∑

k 6=j αkDistance
−ζ
kj

=
αiDistance

−ζ
ij∑

k 6=j αkDistance
−ζ
kj

.�

Derivation of our measure of size, equation (10). To express Sizei ∝ PopiT 1/θ
i as a function

of observables and model parameters only, we first use the definition of our exporter fixed effect αi
estimated from (8),

αi ∝ Tiw−θi ⇒ PopiT
1/θ
i ∝ α1/θ

i wiPopi.

From market clearing,
wiPopi = Xi ⇒ PopiT

1/θ
i ∝ α1/θ

i Xi.

The volume of trade from i to j is simply equal to total expenditure in j multiplied by the probability
of sourcing a good from origin i.

Xij =
Tiw

−θ
i Distance−θij Xj∑

k Tkw
−θ
k Distance−θkj

.

We then manipulate this expression as in Anderson and van Wincoop (2003) to obtain

Xij =
Tiw

−θ
i τ−θij Xj∑

k Tkw
−θ
k τ−θkj

=
XiXj

Xtotal

(
τij

ΠiPj

)−θ
,

with Π−θi =
∑

k

(
τik
Pk

)−θ
Xk

Xtotal
a measure of outward resistance, P−θj =

∑
k

(
τkj
Πk

)−θ
Xk

Xtotal
a measure

of inward resistance, and Xtotal =
∑

kXk. We will rely on the result that if trade frictions are
symmetric, τij = τji, ∀i 6= j, then Πi = Pj and expected trade is symmetric, Xij = Xji. Using the
equivalence between trade shares in value and in count in the Eaton and Kortum (2002) model,

Xij

Xj
=

Tiw
−θ
i τ−θij∑

k Tkw
−θ
k τ−θkj

= E
[

Nij∑
kNkj

]
=

αiτ
−θ
ij∑

k αkτ
−θ
kj

.

Combining this with the above expression for bilateral trade, we get

Xij

Xj
=

Xi

Xtotal

(
τij

ΠiPj

)−θ
=

αiτ
−θ
ij∑

k αkτ
−θ
kj

, ∀i 6= j ⇒ Xi ∝ αiΠ−θi .

From the above, the definition of Π−θi , and symmetry, Pk = Πk, we derive

Π−θi ∝
∑
k

τ−θik Xk/P
−θ
k =

∑
k

τ−θik Xk/Π
−θ
k ∝

∑
k

τ−θik αk.

Combining τ−θik ∝ Distance
−ζ
ik and the above, we get the proposed formula,

Sizei ∝ PopiT
1/θ
i ∝ α

1+1/θ
i

∑
k

Distance−ζki αk.�
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Analytical formulas for standard errors. We follow Cameron and Trivedi (2005) throughout.
The notation is also borrowed from that book, specifically pages 200-202. Let θ = (ζ, · · · )′ be the
parameters of the first step (PPML), collecting the distance elasticity of trade ζ and the exporter
and importer fixed effects. β is the vector of parameters of the second step (NLLS). Let K1 be the
number of city pairs for step 1, and K2 the number of city pairs for step 2. K1 includes all known
cities in our sample that import from other known cities that import from other known cities . . . etc.
K2 includes all cities (known or lost) in our sample, so that K1 < K2.

The variance-covariance matrix of (θ̂, β̂) is

Σ̂ = v̂ar(θ̂, β̂) =
1

K2

(
G11 0
G21 G22

)−1(
S11 S12

S21 S22

)(
G11 0
G21 G22

)−1>
.

We now explain what the components of these block matrices are.
Consider first the Poisson Pseudo MLE step. Let yij be the outcome variable, trade share in

counts, and xij be the vector of covariates. The first component of θ is the distance elasticity of
trade. The other components are coefficients associated with the exporter and importer dummies.
The log-likelihood is then:

logL(θ) =
∑
i,j

(
− exp{x′ijθ}+ yijx

′
ijθ − log yij !

)
.

In m-Estimators terminology (Cameron and Trivedi, p.118), we have:

QK1(θ) =
1

K1

∑
i,j

(
− exp{x′ijθ}+ yijx

′
ijθ − log yij !

)
=

1

K1

∑
i,j

qi,j(θ).

In the notation of two-step m-Estimation (p.200), we have that h1(wij ,θ) = d
dθ qij(θ). Thus,

G11 =
1

K1

∑
i,j

dh1(wij , θ̂)

dθ′
=

1

K1

∑
i,j

d2qij(θ̂)

dθdθ′
=

1

K1

∑
i,j

exp{x′ijθ}xijx′ij

and

S11 =
1

K1

∑
ij

h1(wij , θ̂)h1(wij , θ̂)′ =
1

K1

∑
ij

dqij(θ̂)

dθ1

dqij(θ̂)

dθ′1
=

1

K1

∑
ij

(yij − exp{x′ijθ})2xijx
′
ij .

This coincides with the BHHH estimate (p.138).
Consider now the standard non-linear least squares step. Let eij be the difference between the

model and data trade shares. Given the first stage estimate θ̂, the first order condition of the least
squares problem is: ∑

i,j

eij(β̂; θ̂)
∂

∂β
eij(β̂; θ̂) = 0.

In the notation of the two-stepm-Estimation (p.200), we have that h2(wij , θ̂, β̂) = eij(β̂; θ̂) ∂
∂βeij(β̂; θ̂).

The nonlinear least squares simplifications from p.153 apply, so that

G22 =
1

K2

∑
i,j

∂

∂β
eij(β̂; θ̂)

∂

∂β′
eij(β̂; θ̂).
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Following p.201, we have

S22 =
1

K2

∑
i,j

h2ih
′
2i =

1

K2

∑
i,j

[
eij(β̂; θ̂)

∂

∂β
eij(β̂; θ̂)

] [
eij(β̂; θ̂)

∂

∂β′
eij(β̂; θ̂)

]
Finally, we compute the interactions terms, G21, S12 and S21. Given that we know h1 and h2,

we use the following variation on p.202:

G21 =
1

K2

∑
i,j

∂h2

∂θ′
=

1

K2

∑
i,j

∂

∂θ′

[
eij(β̂; θ̂)

∂

∂β
eij(β̂; θ̂)

]

S12 =
1

K1

∑
i,j

h1ih
′
2i =

1

K1

∑
i,j

(
d

dθ
qij(θ̂)

)
eij(β̂; θ̂)

∂

∂β′
eij(β̂; θ̂)

S21 = S>12.

To derive the standard errors for city sizes, Sizei, we apply the Delta method to (10), using the
above covariance matrix Σ̂.

Analytical formulas for iso-density contours and precision (l) in (12). Iso-density con-
tours are points with latitude-longitude (ϕ, λ) such that fl (ϕ, λ) = c where fl is the p.d.f. of
the bi-variate normal distribution with estimated mean (ϕ̂l, λ̂l), variance (σ̂2

ϕl
, σ̂2

λl
), and correlation

ρ̂ϕl,λl ,

c =
1

2πσ̂ϕl σ̂λl

√
1− ρ̂2

ϕl,λl

exp

(
− 1

2(1− ρ̂2
ϕl,λl

)

[
(ϕ− ϕ̂l)2

σ̂2
ϕl

+
(λ− λ̂l)2

σ̂2
λl

−
2ρ̂ϕl,λl(ϕ− ϕ̂l)(λ− λ̂l)

σ̂ϕl σ̂λl

])
.

This is the formula for an ellipse. We use four values for c corresponding to 50%, 75%, 90%, and
99% confidence regions. For instance, for the 75th percentile, we use c75 defined as,

Pr [(ϕ, λ) | s.t. fl (ϕ, λ) ≥ c75 ] = 0.75.

To derive an analytical formula for precision(l), we start from the definition,

precision (l) =

√
E(ϕ,λ)∼N(β̂l,Σ̂l)

[(
Distance

(
ϕ̂l, λ̂l;ϕ, λ

))2
]
.

Using the Euclidean formula for distance and linearity of the expectation operator, we get,

E(ϕ,λ)∼N(β̂l,Σ̂l)

[(
Distance

(
ϕ̂l, λ̂l;ϕ, λ

))2
]

=

(
10000

90

)2(
E
[
(ϕ− ϕ̂l)2

]
+ cos2

(
37.9

180
π

)
E
[
(λ− λ̂l)2

])
=

(
10000

90

)2 [
σ̂2
ϕl

+ cos2

(
37.9

180
π

)
σ̂2
λl

]
Thus, our formula for the geographic precision (in kms) for lost city l is,

precision (l) =
10000

90

√
σ̂2
ϕl

+ cos2

(
37.9

180
π

)
σ̂2
λl
,

where (σ̂2
ϕl
, σ̂2

λl
) are the variances for the estimated latitudes and longitudes (ϕ̂l, λ̂l) of city l.
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Summary of our Optimization Procedure. Our estimates of (ζ; · · · (ϕl, λl) · · · ; · · ·αi · · · ) are
computed in two steps. First, the distance elasticity of trade – ζ – is estimated by Poisson Pseudo
Maximum Likelihood in the subsample with known location data. Specifically, the independent
variable in the Poisson regression model is the observed trade shares, and the dependent variables
are the log of distance between cities, destination city dummies and origin city dummies. The
estimate for ζ is the resulting coefficient for the log of distance between cities. Our estimation uses
the ppml STATA command written by Silva and Tenreyro (2006).

Second, the geo-coordinates of lost cities and the αi’s are estimated by minimizing the sum
of squared differences between observed and predicted trade shares given our estimate of ζ. This
function of our parameters was coded in Python-Numpy, and the optimization performed using
IPOPT. In particular, we ran 260 jobs in parallel. Each job executed the minimization process
20 times, starting from random initial values. The geo-coordinates’ initial values were uniformly
drawn between 36 and 42 degrees of latitude and 27 and 45 degrees of longitude, whereas the αi’s
initial values were uniformly drawn between 0 and 200. The IPOPT specifications include: 100, 000
maximum iterations, MA57 as the linear solver, a tolerance level of 1.0e−08, and an acceptable
tolerance level of 1.0e−07. Issues of local minima are dealt away upon inspection of all minimization
results. For our main specification, 242 out of 5, 200 executions yield the same lowest sum of squared
differences and have the same parameter estimates, up to 6 decimal points.

B. Data Sources and Optimization Procedure

B.1. Data Construction and Selection of Cities

The database of ancient texts that we have access to contains references to 79 unique cities in
Anatolia (Barjamovic, 2011). Decades of scholarship has successfully disambiguated place names
from terms previously mistaken as cities while they actually refer to types of textiles or people.1 We
drop 40 cities with only a single mention in the entire corpus: their parameters are not identified by
our structural gravity estimation. Other than the remaining 39 Anatolian cities that appear more
than once in the most up to date corpus of Assyrian texts, there are two cities outside of Anatolia
with known locations: Aššur and Qattara. As explained in the text (see footnote 3), we exclude
Aššur from our analysis because the word for Aššur is ambiguous, appearing in persons’ names and
as the name of the main Assyrian deity. This makes it impossible to run an automated search for
the city in the digitized text. We also drop the city of Qattara because it was known to be a small
independent polity in proximity to Aššur, where Assyrian merchants were allowed to pass by, but
not to trade. Qattara being also the first stop on the way from Aššur to Anatolia (last stop on
return trips), any mention of Qattara can only mean a shipment to or from Aššur, not a shipment
to or from Qattara itself. Similar to Aššur, this city is also outside of the modern day Turkish
geography we focus on.

The second criterion is that, out of the set of 39 Anatolian cities, we drop 9 lost cities about
which professional Assyriologists have only speculative conjectures in terms of locations. This is
due to both the relatively low number of mentions to these cities in the texts as well as the lack of
precise descriptions of their geography—see Barjamovic (2011), Table 39 in page 411.

The final criterion is mechanical: any city that is disconnected from the rest of the network
of trading cities cannot be identified in a gravity model. If there is no trade at all between city
i and any other city, our estimator will assign a size zero to that city, and/or an infinite distance
if this city is lost. Note that network connectedness is an iterative notion. We start by dropping

1For more details, see Bilgiç (1951) and Michel and Veenhof (2010).
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all disconnected cities. Having dropped those cities, some cities which were only trading with the
dropped cities are dropped in turn, which further eliminates the cities that were only trading with
those, and so forth. This iterative process leaves us with 25 cities.

The next figure shows the distribution of shipment counts, for all (directed) city pairs with a
positive number of shipments, Ndata

ij > 0.
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Appendix Figure 1: Frequency of shipment counts.

B.2. An Example of a Coincidental Joint Attestation of Two Cities

After reading the 2,806 tablets which mention at least two cities, we discard any case where the two
cities are mentioned in the same tablet for reasons unrelated to any trade relationship between those
cities. Below is an example of a purely coincidental joint attestation of two city names, Hahhum
and Wahšušana, underlined in the text for clarity,

From Enlil-bani to Aššur-idi with Cc to T. ab-s. illi-Aššur and Aššur-[xx] . We had half a
pound of silver transferred in Hahhum, and I gave it to you in the year of Aššur-malik.
You said: “After I make a transport to the City, I will either give you the proceeds or
I will take goods on commission for you.” I paid you in refined silver and we saw each
other about five times when you cheated me. While I was staying in Wahšušana, my
representatives seized you, but you gave them nothing. My representatives said ...

[Tablet BIN 6, 38 (NBC 3808) lines 1-18]

In this text, the merchant Enlil-bani accuses another merchant, T. ab-s.illi-Aššur, of having cheated
him. Enlil-bani mentions the city of Hahhum in the context of a financial transaction between
both merchants (second line). The city of Wahšušana is mentioned in passing in the same letter
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(penultimate line) to describe Enlil-bani’s whereabouts while his representatives were trying to
recover his due. It has nothing to do with the initial financial transaction. There is no direct
economic connection between both cities that can be drawn from this letter.

B.3. A Partial Example of how Historians Locate Lost Cities

Historians Forlanini (2008) and Barjamovic (2011) use a series of references to ancients cities during
the Middle Bronze Age period, complemented with references from later periods, to make informed
proposals for the location of lost cities. A detailed list of references to such proposals was collected
by Nashef (1992) with updates in Ullmann and Weeden (2017).

An example of a few snippets of information that guide the reasoning of historians would be the
following references related to the city of Hahhum. The following text locates Hahhum on a river:

I met Elali in Hahhum while I was staying there at the bank of the river in Habnuk.
[Tablet I 469]

Another text, in this case a later Hittite royal annal, makes it explicit that the river in question was
the Euphrates:

I the Great King Tabarna took away from Hahhu and presented it to the Sun-God. The
Great King Tabarna removed the hands of its slave girls from the grindstone and its
slaves? hands he removed ... he released their belts and he put them in the temple of the
Sun-Goddess of Arinna ... The great river Euphrates, no one had crossed it. [The Great
King] Tabarna crosses it on foot, and his troops crossed it [on] foot after him

[Text KBo 10.1]

A large number of additional references eventually allows historians to formulate with confidence
the hypothesis that Hahhum lies to the South and East of Kaneš, in a position that allowed it
to control an important river crossing. Its neighbor on the opposite river bank was Badna, and
Timelkiya was the next state on the route north-west to Kaneš. Gradually, the positions of the
cities can be established in relation to one another to form a network that can then be placed on
a map. In rare cases, place names may survive to help guide this process, if their location in later
times is known.

B.4. Data on Modern-day Trade, Local Resources, and Topography

Modern-day population. Data on the 2012 urban population of Turkish districts is obtained
from the website of the Turkish Statistical Agency (https://biruni.tuik.gov.tr/EdUygulamaDis/
zul/loginEN.zul?lang=en).

Night time luminosity. Data on nighttime light emissions intensity is used as a proxy for local
GDP at the very granular level, as in Hodler and Raschky (2014). The data for 2003 is from
the National Oceanic and Atmospheric Administration (NOAA), available at http://ngdc.noaa.gov.
Weather satellites from the U.S. Air Force measure light intensity between 8:30PM and 10:00PM,
removing observations affected by cloud conditions, and correcting for likely ephemeral lights or
background noise.

Crop yields. We use the low-input level rain-fed cereal suitability index of IIASA/FAO (2012)
available at http://www.fao.org/nr/gaez/en/.
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Ruggedness. We use the Terrain Ruggedness Index of Riley, DeGloria, and Elliot (1999), defined
as the square root of the sum of squared elevation changes in 8 directions.

Elevation. Elevation data to calculate the natural road scores is obtained from IIASA/FAO
(2012) and is available at http://www.fao.org/nr/gaez/en/.

Rivers and lakes. The shapefile of rivers and lakes in Turkey, used in calculating the natural
road scores, has been downloaded from http://www.naturalearthdata.com/.

C. Optimal Travel Routes

To define optimal travel routes, we use topographical data, and Dijkstra’s shortest path algorithm.
Formally, we collect data on elevation on a fine grid (each pixel’s side is 5 arc minutes, or about

10 km). The elevation data is downloaded from FAO-GAEZ, which itself is based on NASA’s shuttle
radar topography mission (IIASA/FAO, 2012). We collect elevation data on a large area around
central Anatolia, in order to avoid a core-periphery bias –the tendency to have more road-crossings
in locations in the center of the map. The total area is contained between 16 and 55 degrees of
longitude East, and 26 and 51 degrees of latitude North. It corresponds to a wide area between
Hungary in the Northwest, Kazakhstan in the Northeast, Kuwait in the Southeast, and Libya in
the Southwest, which extends well beyond central Anatolia. We remove from this map the Arabian
desert, assuming implicitly that travellers were not crossing it. We do include any maritime area
where the sea is less than 500 m deep, allowing maritime travel along the coasts, but preventing
high sea travel. The elevation map for the entire region we consider is depicted below.

Appendix Figure 2: Elevation.

Given this fine elevation grid, we compute travel times between any pixel and its eight neighbors
(North-South, East-West, and diagonally). First, we compute the horizontal distance between any
two contiguous pixels (in meters), and the signed elevation difference between them (in meters).

Appendix - 9

http://www.fao.org/nr/gaez/en/
http://www.naturalearthdata.com/downloads/10m-physical-vectors/10m-rivers-lake-centerlines/


We then apply the formula from Langmuir (1984) to translate distances and slope into travel times
(in seconds). The parametrization of Langmuir’s formula we apply for overland travel is as follows.
We assume it takes 0.72 seconds to travel 1 meter horizontally; it takes an additional 6 seconds for
each vertical meter uphill; going downhill 1 vertical meter on a gentle slope (less than or equal to
21.25%) saves 2 seconds per vertical meter; going downhill on a steep slope (more than 21.25%)
adds an additional 2 seconds per vertical meter. For maritime travel, we assume traveling by boat
is 10% faster than traveling over a featureless plain overland. However, in order to avoid many very
short trips by sea, we assume it takes 1 hour to embark on a boat (from land to sea), and 1 hour to
disembark (from sea to land). This assumption of a fixed cost of loading/unloading boats creates
a natural tendency for sea ports to emerge where natural terrestrial routes (e.g. a valley) connect
to the sea. Finally, we manually code major lakes, and three main rivers, the Euphrates, the Red
river, and the Green river in Turkey. For the three rivers, we collect information on impassable
segments of the river (e.g. deep and steep canyon), as well as easy crossings/fords known to have
been used in the Bronze Age, using data from Palmisano (2013). We impose a prohibitive penalty
for crossing major lakes and those three rivers over segments where they are deemed impassable,
and allow crossing as if it were on dry land for the river crossings.

Having defined travel times between any pixel and its eight neighbors, we apply Dijkstra’s
algorithm to compute the optimal travel paths between any two pixels (Dijkstra, 1959). We use
those travel paths and travel times when encoding the information contained in merchants itineraries
in section IV.B (see the details in appendix D), and when defining natural roadways to compute
the variable NaturalRoads in section V.B (see the details in appendix E).

D. Constraints from Merchants Itineraries

To impose constraints on the location of lost cities, using information contained in multi-stop
merchant itineraries, we proceed as follows.

First, we collect systematic information on multiple itineraries of either merchants or caravans
in our corpus of texts. We keep only itineraries with at least one stop in a lost city.

Second, we compute the following two statistics for all segments of those itineraries from one
known city to another known city: the average travel length ||average segment||, and the standard
deviation of the segment lengths ||s.d. segment||. Our measure of length is the optimal travel time
between the two ends of each segment, defined in appendix C.

Third, we jointly impose on all lost cities the “short detour” and “pit stop” constraints defined
in section IV.B, using all mentions of itineraries. In other words, for all lost cities jointly, we search
for all grid points such that both constraints are satisfied. To solve for this multi-dimensional
search, we proceed sequentially. We start by imposing all “pit stop” constraints where one city is
known, and one city is unknown. This gives us an admissible region for each lost city mentioned at
least once alongside a known city. We then impose all the “short detour” constraints involving two
known cities and one lost city, searching only within the admissible regions of the previous step.
This further restricts the size of the admissible regions for each lost city mentioned at least once
alongside known cities. We finally solve a minimization problem using all the remaining “pit stop”
and “short detour” constraints, imposing a penalty for a violation of the constraints.

E. Constructing Natural Road Scores

To compute the NaturalRoads variable, we proceed as follows.
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We use the large region depicted in Appendix Figure 2, which extends widely beyond central
Anatolia. For any two pixels on that map, we know the route of the shortest path from one to the
other, using the procedure described in appendix C. Our purpose is to compute, for each pixel on
the map, the number of optimal paths that intersect on that pixel. This corresponds to the notion
of between-ness centrality in the network of optimal routes.

In order to distinguish between short distance routes (arguably travelled frequently) versus long
distance routes (arguably travelled infrequently), we implicitly assume a gravity model of migrations.
For any optimal route from pixel i to pixel j with duration dij , we assume this route is travelled
with a probability proportional to d−ζ̂ij , where ζ̂ = 1.9 is our estimate for the distance elasticity
of trade in the Middle Bronze Age, and where we use the algorithm described in appendix C to
compute shortest paths and their durations. This probability weighting corresponds to an implicit
gravity model of migrations, where humans are uniformly distributed over space, and travel between
locations according to a gravity model with distance elasticity ζ̂.

For any pair of pairs of points on Appendix Figure 2, (A,B) and (C,D), with shortest paths of
durations dAB and dCD, we draw the pair (A,B) with probability proportional to d−ζ̂AB and the pair

(CD) with probability proportional to d−ζ̂CD. If the two paths either intersect or overlap on a given
pixel, we record their intersection for that pixel point. We repeat this procedure 1 million times.
Each pixel receives a “road-knot score” equal to the number of intersections or overlaps recorded on
that pixel.

For each ancient city i, either known or lost (we use our structural gravity estimates for the
location of lost cities as our main specification, but also experiment with alternative locations as
robustness), our variable of interest, NaturalRoadsi, simply adds up this “road-knot score” from
all pixels which are within 20 km of city i.

References

Anderson, J. E. and E. van Wincoop (2003): “Gravity with Gravitas: A Solution to the Border
Puzzle,” American Economic Review, 93, 170–92.

Barjamovic, G. (2011): A Historical Geography of Anatolia in the Old Assyrian Colony Period,
Copenhagen: Museum Tusculanum Press.

Bilgiç, E. (1951): “Die Ortsnamen der kappadokischen Urkunden im Rahmen der alten Sprachen
Anatoliens,” Archiv für Orientforschung, 15, 3–37.

Cameron, A. C. and P. K. Trivedi (2005): Microeconometrics: methods and applications,
Cambridge university press.

Dijkstra, E. W. (1959): “A note on two problems in connexion with graphs,” Numerische math-
ematik, 1, 269–271.

Eaton, J. and S. Kortum (2002): “Technology, Geography and Trade,” Econometrica, 70, 1741–
79.

Eaton, J., S. Kortum, and S. Sotelo (2012): “International Trade: Linking Micro and Macro,”
NBER Working Paper No.17864.

Forlanini, M. (2008): “The Central Provinces of Hatti. An Updating,” in New Perspectives on
the Historical Geography and Topography of Anatolia in the II and I Millennium BC, ed. by
K. Strobel, (EOTHEN 16) Firenze: LoGisma Editore, 1, 145–188.

Appendix - 11



Hodler, R. and P. A. Raschky (2014): “Regional Favoritism,” The Quarterly Journal of Eco-
nomics, 129, 995–1033.

IIASA/FAO (2012): Global Agro-Ecological Zones (GAEZ v3.0), IIASA, Laxenburg, Austria and
FAO, Rome.

Langmuir, E. (1984): Mountaincraft and leadership: a handbook for mountaineers and hillwalking
leaders in the British Isles, Edinburgh: Scottish Sports Council.

Michel, C. and K. Veenhof (2010): “The Textiles Traded by the Assyrians in Anatolia (19th-
18th centuries BC),” in Textile Terminologies in the Ancient Near East and Mediterranean from
the Third to the First Millennia BC, ed. by C. Michel and M.-L. Nosch, Ancient Textiles Series
Vol. 8. Oxford and Oakville: Oxbow Books, 210–271.

Nashef (1992): Die Orts- und Gewassernamen der altassyrischen Zeit, Wiesbaden: Ludwig Re-
ichert.

Palmisano, A. (2013): “Computational and Spatial Approaches to the Commercial Landscapes
and Political Geography of the Old Assyrian Colony Period.” in Time and History in the Ancient
Near East. Proceedings of the 56th Rencontre Assyriologique Internationale, Barcelona, July 26-
30, 2010., ed. by L. Feliu, J. Llop, A. M. Albà, and W. Lake., Eisenbrauns, 767–783.

Riley, S. J., S. D. DeGloria, and R. Elliot (1999): “Index that quantifies topographic
heterogeneity,” Intermountain Journal of sciences, 5, 23–27.

Silva, J. S. and S. Tenreyro (2006): “The Log of Gravity,” The Review of Economics and
statistics, 88, 641–658.

Tobler, W. and S. Wineburg (1971): “A Cappadocian speculation,” Nature, 231, 39–41.

Ullmann, L. and M. Weeden (2017): Hittite Landscape and Geography, Leiden: Brill.

Appendix - 12



F. Additional Tables

Appendix Table 1: Proof of Concept, Recovering Fictitiously Lost Cities

True Coordinates Estimated Coordinates

Latitude Longitude Latitude Longitude Distance in km
Hattus 40.021 34.61 40.044 34.635 3

(0.53) (0.58)
Kanes 38.85 35.633 38.955 35.277 33

(0.407) (0.375)
Karahna 40 36.1 40.021 34.618 130

(2964.306) (170.666)
Tapaggas 40.148 35.762 40 35.818 17

(317.12) (97.762)
Hanaknak 40 35.817 40.164 35.764 19

(0.015) (0.24)
Hurama 38.261 37.114 39.643 37.327 155

(0.715) (0.457)
Malitta 39.363 33.787 38.996 34.644 86

(0.659) (0.442)
Mamma 37.583 36.933 38.02 36.5 62

(1.603) (0.513)
Salatuwar 39.655 31.994 39.64 33.192 105

(0.895) (0.413)
Samuha 39.619 36.528 39.399 36.11 44

(0.196) (0.383)
Timelkiya 38.027 38.234 38.403 37.488 78

(0.451) (0.411)
Ulama 38.411 33.834 39.852 33.196 170

(0.402) (0.966)
Unipsum 38.021 36.503 37.583 36.933 61

(1462.246) (1105.701)
Wahsusana 39.584 33.418 38.457 32.077 172

(17.831) (27.255)
Zimishuna 40.461 35.65 40.47 35.65 1

(307617.802) (461223.631)
Mean 76
Median 62

Notes: This table presents the results from our ‘proof-of-concept’ exercise in section IV.C. For all known cities, we
list the true geo-coordinates of each city, their estimated geo-coordinates from estimating a model similar to (8), and
the distance, in kms, between the true and estimated locations. The results for all cities are shown on single map on
figure VI. All latitudes are North, and all longitudes are East. Robust (White) standard errors in parentheses.
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Appendix Table 2: Proof of Concept (robustness), Recovering One Fictitiously Lost City
and Ten Lost Cities Jointly

True Coordinates Estimated Coordinates

Latitude Longitude Latitude Longitude Distance in km
Hattus 40.021 34.61 39.997 36.131 133

(0.322) (0.073)
Kanes 38.85 35.633 39.313 33.918 159

(0.252) (0.156)
Karahna 40 36.1 40.046 34.547 136

(0.754) (0.475)
Tapaggas 40.148 35.762 40 35.817 17

(167.04) (115.323)
Hanaknak 40 35.817 40.15 35.761 17

(0.25) (0.522)
Hurama 38.261 37.114 39.139 38.226 138

(1.221) (4.488)
Malitta 39.363 33.787 38.888 35.282 141

(0.515) (0.141)
Mamma 37.583 36.933 38.02 36.503 61

(1.37) (0.782)
Salatuwar 39.655 31.994 39.561 33.356 120

(0.959) (0.604)
Samuha 39.619 36.528 38.3 37.118 155

(0.09) (0.563)
Timelkiya 38.027 38.234 38.261 37.114 102

(0.019) (0.045)
Ulama 38.411 33.834 39.835 33.234 167

(0.4) (1.277)
Unipsum 38.021 36.503 37.583 36.933 61

(389261.721) (646044.057)
Wahsusana 39.584 33.418 39.003 31.926 146

(10.185) (50.561)
Zimishuna 40.461 35.65 39.234 34.213 186

(23.126) (50.515)
Mean 116
Median 136

Notes: This table presents the results from a robustness check of our ‘proof-of-concept’ exercise in Appendix Table 1.
For each line, we set the distance elasticity at ζ = 1.9, and using (8), we estimate the geo-coordinates of one fictitiously
lost city alongside the ten truly lost cities. We also re-estimate all other parameters of the model. For Karahna and
Zimišhuna, our minimization algorithm hits the non-negativity constraint on their α’s. For all known cities, we list
the true geo-coordinates of each city, their estimated geo-coordinates from estimating (8), and the distance, in kms,
between the true and estimated locations. All latitudes are North, and all longitudes are East. Robust (White)
standard errors in parentheses.
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Appendix Table 3: Assigning Lost Cities to Archaeological Sites

Lost city Candidate site Distance to gravity Log(p.d.f.)
gravity estimate estimate (in km)
Durhumit
40.47, 35.65

Ayvalıpınar 0.97 1.68
40.46, 35.65
Oluz Höyük 8.62 -45.66
40.55, 35.63
Ferzant 27.53 -114.33
40.6, 35.38
Doğantepe 14.71 -130.09
40.6, 35.6
Boyalı 123.58 -463.26
40.31, 34.26

Hahhum
38.43, 38.04

Imikuşağı 37.9 0.32
38.52, 38.46
Değirmentepe 36.18 0.26
38.48, 38.45
Imamoğlu 38.92 0.18
38.48, 38.48
Arslantepe 28.69 0.17
38.38, 38.36
Yassıhöyük (Tanır) 98.88 -3.38
38.39, 36.91

Kuburnat
40.71, 36.52

Tekkeköy (Samsun) 54.57 -1.01
41.2, 36.45
Dündartepe 61.74 -1.12
41.25, 36.35
Kaledoruğu (Kavak) 58.61 -1.26
41.08, 36.04
Kayapınar Höyüğü 65.42 -1.27
40.16, 36.25
Bolus (Aktepe) 71.72 -1.28
40.07, 36.5

Continued on the next page
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Appendix Table 3: Assigning Lost Cities to Archaeological Sites (continued)

Lost city Candidate site Distance to gravity Log(p.d.f.)
gravity estimate estimate (in km)
Ninassa
38.98, 34.61

Suluca Karahöyük (Hacibektaş) 7.42 0.11
38.93, 34.55
Topakhöyük 49.37 -0.12
38.61, 34.29
Zank 16.05 -0.19
38.95, 34.79
Topaklı 18.93 -0.2
39.01, 34.83
Uşaklı/Kuşaklı Höyük 100.87 -0.45
39.8, 35.1

Purushaddum
39.71, 32.87

Karaoğlan 4.3 -1.13
39.73, 32.83
Külhöyük (Haymana) 31.43 -1.18
39.48, 32.67
Ballıkuyumcu 31.77 -1.51
39.77, 32.52
Çomaklı / İlmez 223.91 -2.21
37.72, 32.5
Ortakaraviran II 267.98 -2.27
37.38, 32.09

Sinahuttum
39.96, 34.87

Yassıhöyük (Yozgat) 3.97 2.05
39.99, 34.88
Çengeltepe 12.99 1.79
39.84, 34.87
Eskiyapar 23.91 -0.44
40.16, 34.77
Mercimektepe 110.6 -2.25
40.88, 35.34
Suluca Karahöyük (Hacibektaş) 116.96 -3.73
38.93, 34.55

Continued on the next page
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Appendix Table 3: Assigning Lost Cities to Archaeological Sites (continued)

Lost city Candidate site Distance to gravity Log(p.d.f.)
gravity estimate estimate (in km)
Suppiluliya
40.02, 34.62

Suluca Karahöyük (Hacibektaş) 120.98 -3.65
38.93, 34.55
Alaca Höyük 24.3 -51.97
40.23, 34.68
Büyüknefes (Bronze Age Site) 21.61 -201.29
39.85, 34.5
Eskiyapar 20.46 -373.9
40.16, 34.77
Arslantepe 375.37 -Inf
38.38, 38.36

Tuhpiya
39.61, 35.2

Çadır (Sorgun) 9.27 1.25
39.68, 35.14
Uşaklı/Kuşaklı Höyük 22.76 0.34
39.8, 35.1
Çengeltepe 38.43 -1.48
39.84, 34.87
Boğazlıyan / Yoğunhisar 49.42 -3.01
39.17, 35.23
Üyük 82.78 -3.27
40.15, 35.85

Washaniya
39.16, 34.31

Yassıhöyük (Çoğun / Kırşehir) 27.42 0.34
39.32, 34.08
Suluca Karahöyük (Hacibektaş) 32.51 0.08
38.93, 34.55
Harmandalı 39.14 -0.38
38.95, 33.95
Zank 48.08 -1.08
38.95, 34.79
Topaklı 48.17 -1.11
39.01, 34.83

Continued on the next page
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Appendix Table 3: Assigning Lost Cities to Archaeological Sites (continued)

Lost city Candidate site Distance to gravity Log(p.d.f.)
gravity estimate estimate (in km)
Zalpa
38.81, 37.86

Yassıhöyük (Tanır) 95.1 -0.86
38.39, 36.91
Yalak (Boz Höyük) 137.32 -1.39
38.3, 36.44
Sarız 125.22 -1.67
38.47, 36.5
Imikuşağı 60.94 -2.32
38.52, 38.46
Değirmentepe 62.95 -2.56
38.48, 38.45

Notes: This table gives a list of the five most likely potential archaeological sites for each lost city. The
table lists each lost city, with its the geo-coordinates (first latitude, North, then longitude, East) derived from
estimating our gravity model (for instance, the estimated coordinates for Durhumit are 40.47 degrees North
and 35.65 degrees East). It then lists the top five candidate sites, with their corresponding geo-coordinates.
The sites are ordered in decreasing order of probability density, where we evaluate our estimated probability
density, f̂l (ϕ, λ) for each lost city l at each potential site’s coordinates, using equation (13). For each potential
site, we display the distance (in km) from its corresponding lost city gravity estimate, and the (log) probability
density for that site. For instance, Ayvalıpınar is the most likely location for Durhumit, at a distance of 0.97km
from our gravity estimate, and with a log(p.d.f.) of 1.68.
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Appendix Table 4: Determinants of Ancient City Sizes, Robustness

log
(
PopT 1/θ|ancient

)
(1) (2) (3) (4) (5)

Panel A: Barjamovic (2011) locations

log (NaturalRoads) 0.141 0.163
(0.281) (0.234)

log (RomanRoads) 0.776* 0.783*
(0.068) (0.076)

log (Ruggedness) 0.067 0.135 0.080
(0.766) (0.557) (0.679)

N 25 25 25 25 25
R2 0.062 0.145 0.006 0.084 0.153

Panel B: known cities only

log (NaturalRoads) 2.105* 2.526*
(0.086) (0.057)

log (RomanRoads) 4.540 4.771
(0.207) (0.125)

log (Ruggedness) 2.722 3.970*** 2.878*
(0.123) (0.001) (0.059)

N 15 15 15 15 15
R2 0.311 0.126 0.111 0.536 0.251

Notes: This table replicates the results in table IV. Panel A uses the locations of lost cities proposed by Barjamovic
(2011) instead of our structural gravity estimates. Panel B uses only the subsample of cities with known locations.
Robust p-values are in parentheses.
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Appendix Table 5: Persistence of Economic Activity across 4000 Years, Robustness

log(Population) log(NightLights)

(1) (2) (3) (4) (5) (6)

Panel A: Barjamovic (2011) locations

log
(
PopT 1/θ|ancient

)
0.691 0.899 0.675** 0.889***
(0.194) (0.143) (0.014) (0.002)

log (CropY ield) 0.518 1.123 0.558 1.158*
(0.681) (0.390) (0.408) (0.086)

N 25 25 25 25 25 25
R2 0.045 0.007 0.073 0.134 0.025 0.229

Panel B: known cities only

log
(
PopT 1/θ|ancient

)
0.171* 0.209** 0.066 0.091
(0.062) (0.026) (0.203) (0.120)

log (CropY ield) 1.138 1.866 0.935 1.253*
(0.458) (0.169) (0.254) (0.088)

N 15 15 15 15 15 15
R2 0.135 0.035 0.223 0.062 0.073 0.184

Panel C: ancient site matched to the largest modern settlement

log
(
PopT 1/θ|ancient

)
0.235** 0.303**
(0.031) (0.013)

log (CropY ield) 0.716 1.791*
(0.516) (0.078)

N 24 24 24
R2 0.154 0.015 0.236

Panel D: ancient site matched to the closest modern settlement

log
(
PopT 1/θ|ancient

)
0.252** 0.311***
(0.019) (0.010)

log (CropY ield) 0.478 1.582
(0.648) (0.112)

N 24 24 24
R2 0.207 0.008 0.283

Notes: This table replicates the results in table V. Panel A uses the locations of lost cities proposed by Barjamovic
(2011) instead of our structural gravity estimates. Since none of these locations correspond to the modern city of
Ankara, this estimation features the full set of 25 cities. See text for details. Panel B uses only the subsample of
15 cities with known locations, both in estimation and in backing out PopT 1/θ|ancient values. Instead of matching
ancient settlements to the sum of all modern settlements within 20 km, Panel C and D match them to the largest
modern urban settlement within 20 km and to the closest one, respectively. Since the dependent variables in Panels
C and D follow administrative boundaries, the NighLights variable does not apply to these specifications. Robust
p-values are in parentheses.
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Appendix Table 6: Structural versus Naive Gravity: Locating Lost Cities

(1) (2) (3)
Durhumit 127 48 99
Hahhum 193 102 256
Kuburnat 62 70 70
Ninassa 81 93 149
Purushaddum 241 193 432
Sinahuttum 34 24 35
Suppiluliya 67 85 37
Tuhpiya 200 112 99
Washaniya 132 13 143
Zalpa 96 131 224
Mean 123.3 87.1 154.4

Notes: This table compares the estimated locations of lost cities using either our structural gravity model (8) or a
naive gravity model (17) similar to that used by Tobler and Wineburg (1971). Column 1 reports the distance between
the structural and naive estimates for lost city locations. Column 2 gives the distance between the location proposed
by Barjamovic (2011) and the structural estimates. Column 3 gives the distance between the location proposed by
Barjamovic (2011) and the naive estimates. All distances are in km.
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Appendix Table 7: Structural versus Naive Gravity: Ancient City Sizes

Structural estimates Naive estimates

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Determinants of ancient city sizes

log
(
PopT 1/θ|ancient

)
log (NaturalRoads) 1.404** 1.783*** 1.163* 1.505** 0.630*** 0.678*** 0.682 1.097*

(0.013) (0.002) (0.092) (0.038) (0.000) (0.000) (0.301) (0.053)
log (Ruggedness) 3.189*** 2.147** 0.449 1.022**

(0.000) (0.012) (0.145) (0.025)

N 25 25 10 10 25 25 10 10
R2 0.224 0.508 0.178 0.378 0.296 0.348 0.124 0.508
Sample of cities all all lost lost all all lost lost

Panel B: Persistence of economic activity across 4000 years

log (Population)

log
(
PopT 1/θ|ancient

)
0.230** 0.297** 0.387** 0.533** 0.313 0.307 -0.139 -0.140
(0.035) (0.015) (0.035) (0.063) (0.376) (0.367) (0.717) (0.677)

log (CropY ield) 1.781* 2.238* 0.921 -0.008
(0.079) (0.093) (0.439) (0.997)

N 24 24 10 10 25 25 10 10
R2 0.145 0.226 0.362 0.487 0.035 0.059 0.010 0.010
Sample of cities all all lost lost all all lost lost

Notes: This table compares the estimated sizes of ancient cities using either our structural gravity model (8) and
(11) or a naive gravity model (17) similar to that used by Tobler and Wineburg (1971). Panel A replicates the
results in table IV, using either our structural estimates (columns 1-4) or naive estimates (column 5-8). Columns 1
and 2 simply reproduce columns 1 and 4 of table IV for comparison. Columns 3 and 4 replicate the specifications
of columns 1 and 2 on the subset of lost cities only. Column 5 to 8 replicate the specifications of columns 1 to 4
using naive estimates instead of structural ones. Panel B replicates the results in table V, using either our structural
estimates (columns 1-4) or naive estimates (column 5-8). Columns 1 and 2 simply reproduce columns 1 and 3 of table
V for comparison. Columns 3 and 4 replicate the specifications of columns 1 and 2 on the subset of lost cities only.
Column 5 to 8 replicate the specifications of columns 1 to 4 using naive estimates instead of structural ones. To offer
a meaningful comparison between structural and naive estimates, we do not drop Purušhaddum in columns 3-4 and
7-8, as it is an outlier (near modern Ankara) for the structural estimates (columns 3-4), but not for the naive ones
(columns 7-8). Robust p-values are in parentheses.
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