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We characterize the necessary and sufficient conditions for optimality in discrete-time,
infinite-horizon optimization problems with a state space of finite or infinite dimension.
It is well known that the challenging task in this problem is to prove the necessity of the
transversality condition. To do this, we follow a duality approach in an abstract linear
space. Our proof resembles that of Kamihigashi (2003), but does not explicitly use results
from real analysis. As an application, we formalize Sims’s argument that the no-Ponzi
constraint on the government budget follows from the necessity of the tranversality
condition for optimal consumption.

Keywords: Dynamic Optimization, Transversality Condition

1. INTRODUCTION

We characterize the necessary and sufficient conditions for optimality in discrete-
time, infinite-horizon optimization problems with a state space of finite or infinite
dimension. It is well known that the challenging task in this problem is to prove the
necessity of the transversality condition (TVC)—see Stokey and Lucas (1989). To
do this, we follow a duality approach and construct support prices using a separat-
ing hyperplane theorem. This approach highlights the economic intuition behind
the optimality conditions and lends itself to useful applications. We demonstrate
such a case at the end of the paper, where we derive the no-Ponzi condition for
a fiscal dynamic optimization problem from the budget constraint and TVC of
households.

Our work contributes to an established literature in optimization. Weitzman
(1973) characterizes optimality conditions in a discrete-time infinite-horizon set-
ting by restricting the state space to be Euclidean. Benveniste and Scheinkman
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(1982) provide a continuous-time treatment. Michel (1990) extends the charac-
terization in Weitzman (1973) to a general concave discrete-time optimal control
problem. Kamihigashi (2001) generalizes the necessity result for the TVC without
assuming concavity.

These studies, however, mostly focus on finite-dimensional state spaces.
Infinite-dimensional state spaces arise in economics. For example, in a stochastic
economy, the state is a function of random shocks, and optimization theory can
be extended straightforwardly to such a stochastic environment by representing
the state at a given time as a random vector. In general, such random vectors are
elements of an infinite-dimensional vector space. Although the characterization
of Michel (1990) can be generalized by assuming a nonempty relative interior for
the infinite-dimensional set, Kamihigashi (2003) proves the necessity of the TVC
directly in a stochastic dynamic problem, utilizing some results (such as Fatou’s
lemma) that are specific to vector spaces of random variables.

Our modest contribution is to characterize all of the optimality conditions for
an infinite-dimensional state space in general vector-space terms, in a framework
chosen judiciously to be highly tractable but not unduly narrow. By doing so, we
provide a geometrically intuitive statement of the conditions that unify the finite-
and infinite-dimensional cases. For the sake of intuitiveness and in order to keep
proofs simple, we have stated some conditions in less generality than would be
possible. In a concluding section, we indicate how to handle an issue regarding the
dual space (that is, the space of price vectors) by relaxing one of our assumptions.

Before entering a technical discussion, let us briefly summarize the intuition
behind the theory to be studied. This theory concerns optimization over an infinite
(without loss of generality) time horizon. The optimization problem is to control
the evolution of a state, such as a vector of stocks of various capital goods. There
is an exogenous initial state. At each time (as represented hereafter by the discrete
sequence of dates 1, 2, . . . ), there is an exogenous constraint on which new states
can be reached from the current state. For example, what capital stock would it be
feasible to hold next year, given the amount of capital currently held? A choice
must be made, subject to this constraint, and a momentary payoff results from the
choice. For example, making a transition to a relatively low capital stock at the
next state leaves more resources available for consumption than reaching a higher
stock would allow, so choosing the lower stock will afford a higher momentary
payoff. But the higher stock at the next date would afford more opportunities and,
presumably, a higher momentary payoff at that next date. Thus, the optimization
problem is to achieve the best stream of payoffs, according to some intertemporal
aggregation criterion.

2. NOTATION AND DEFINITIONS

The state xt is a vector defined over a Banach space V (that is, a vector space
with a norm that induces a complete topology) with the norm ‖.‖v : V → R+.1

Suppose that V is partially ordered by the binary relation ≤V such that for all x,
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y, and z in V and α > 0 in R, the following relation holds:

x ≤V y ⇒ [x + z ≤V y + z and αx ≤V αy].

Define the positive cone of V by P = {xt ∈ V | 0 ≤V xt }. The normed-dual
space V ∗ of V is the vector space of continuous linear functionals p : V → R,
with the positive cone P ∗ = {p ∈ V ∗ | ∀xt ∈P 0 ≤ p(xt )}.2

The product space V × R is of special interest in the context of dynamic
programming where the state vector and its value are key objects. Because normed
vector spaces are closed under Cartesian products with a suitably chosen norm,
the product space V × R is also a normed vector space.

Transforming the state variable xt to xt+1 yields a payoff of ut . Preferences and
technology are thus captured by the set

(xt , ut , xt+1) ∈ �t ⊆ V × (
R ∪ {−∞}) × V.

In contrast to Weitzman (1973), we do not restrict momentary payoffs to be
bounded from below. Such a restriction would be inconsistent with some formula-
tions that are convenient in applications, especially with specifying a logarithmic
payoff function. The need to cope with the possibility of unbounded payoffs
will motivate our choice of an intertemporal-payoff-aggregation criterion in the
ensuing analysis.

At each t , the set of states that allow a technologically feasible transition is
denoted by

Xt = {x ∣∣ ∃u ∃x ′ (x, u, x ′) ∈ �t }.
A path is a sequence 〈xt , ut 〉∞t=0 ∈ V N × (R ∪ {−∞})N, where 〈xτ , uτ 〉∞τ=t

denotes the infinite sequence 〈(x0, u0), (x1, u1), (x2, u2), . . . 〉. Each ordered pair
specifies a state and a payoff level. The set of feasible paths from date t onward,
starting with an initial state xt = x, is defined as

Ft,x =
{
〈xτ , uτ 〉∞τ=t | xt = x and for τ ≥ t, (xτ , uτ , xτ+1) ∈ �τ

}
.

We make the following assumptions about the primitives of the problem. Addi-
tional assumptions that put more structure on the relevant objects will be introduced
later.

A.1. If x ∈ Xt , then Ft,x �= ∅.3

A.2. For all t , given some x ∈ Xt , the following condition holds for all
〈xτ , uτ 〉∞τ=t ∈ Ft,x:

lim inf
T →∞

T∑
τ=t

uτ < ∞.
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(A.1) states that there exists a feasible path. In a multisector growth model with
an unbounded technology set, the upper bound in (A.2) would follow from an
underlying scarcity of labor, as in Peleg and Ryder (1972), and McKenzie (1976)
obtains it also from a set of assumptions about the underlying momentary utility
function being concave and the optimal state being interior. We prefer to introduce
it directly.

Because infinite payoff sums may not converge, we use the catching-up criterion
for optimality introduced by Gale (1967), which compares finite partial sums. A
path 〈xt , ut 〉∞t=0 is said to catch up with 〈yy, vt 〉∞t=0 if

lim inf
T →∞

T∑
t=0

(ut − vt ) ≥ 0. (1)

An optimal path catches up with all other feasible paths having the same initial
condition. A path 〈xt , ut 〉∞t=0 ∈ F0,x is optimal given initial state x if and only if
it catches up with all 〈yt , vt 〉∞t=0 ∈ F0,y0 , where y0 ≤ x and y0 ∈ X0. Note that
for convergent sums, this definition is equivalent to the definition in Weitzman
(1973).4

3. SUFFICIENT CONDITIONS FOR THE OPTIMAL PATH

We start by establishing the sufficient conditions for a proposed path to be optimal.
Because we do not rule out infinite momentary loss, we need to distinguish between
paths with respect to whether their sum-of-payoff stream is bounded from below
or not. Define the set of paths with sum of payoff stream bounded from below for
a given state x ∈ X0 as follows:

Gx =
{
〈xt , ut 〉∞t=0

∣∣ 〈xt , ut 〉∞t=0 ∈ F0,x and lim inf
T →∞

T∑
t=0

ut > −∞
}
.

THEOREM 1. Given the initial state x ∈ X0, suppose that 〈xt , ut 〉∞t=0 ∈ Gx

and that there is a sequence p ∈ (P ∗)N such that for all 〈yt , vt 〉∞t=0 ∈ F0,y0 with
y0 ≤V x and y0 ∈ X0,

∀t ut + pt+1(xt+1) − pt(xt ) ≥ vt + pt+1(yt+1) − pt(yt ), (2)

and for all 〈yt , vt 〉∞t=0 ∈ Gy0 with y0 ≤V x and y0 ∈ X0,

lim sup
t→∞

pt(xt − yt ) ≤ 0. (3)

Then 〈xt , ut 〉∞t=0 is optimal.

Proof. It must be shown that lim infT →∞
∑T

t=0(ut − vt ) ≥ 0 holds for
any sequence 〈yt , vt 〉∞t=0 ∈ Gy0 satisfying y0 ≤V x and y0 ∈ X0 and
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lim supt→∞ pt(xt − yt ) ≤ 0. If 〈yt , vt 〉∞t=0 /∈ Gy0 , then this conclusion holds
trivially. Suppose 〈yt , vt 〉∞t=0 ∈ Gy0 . The result follows from the following set of
inequalities, holding for all feasible sequences with y0 ≤V x0 = x. The last line
uses condition (3) together with the fact that − lim sup(−at ) = lim inf(at ):

lim inf
T →∞

T∑
t=0

[ut − vt ] = lim inf
T →∞

{
[p0(x) − p0(y0)]

+
[

T∑
t=0

{[ut + pt+1(xt+1) − pt(xt )] − [vt + pt+1(yt+1) − pt(yt )]}
]

− [pT +1(xT +1) − pT +1(yT +1)]

}

≥ lim inf
T →∞

{
0 +

[
T∑

t=0

0

]
− [pT +1(xT +1) − pT +1(yT +1)]

}

≥ 0.

Condition (2) is about the existence of linear functionals valuing the state space
such that the proposed optimal path solves a period-by-period optimization prob-
lem. Condition (3) is a general form of TVC describing the asymptotic behavior.
Next we show that, under additional assumptions, it is equivalent to the familiar
form limt→∞ pt(xt ) = 0. We have stated Theorem 1 in terms of (3) to emphasize
that the more familiar form is a special case. What really matters for the long-run
behavior of the optimal sequence of state variables is that its value is asymptotically
lower than under any other feasible path. For a discussion of various presentations
of the TVC, see Michel (1990).

A.3. There exists a sequence v = 〈vt 〉∞t=0 such that [(x, v0), (0, v1),

(0, v2) . . . ] ∈ Gx .

A.4. [(x, r, y) ∈ �t, x ≤V x ′, y ′ ≤V y and r ′≤r] =⇒ (x ′, r ′, y ′)∈
�t.

A.5. The state variable is restricted to the positive cone of V ; i.e., xt ∈ P for
all t .

(A.3) states that some finite payoff stream is feasible when we start from the
given initial state, dispose of it immediately, and continue forever in state 0. To-
gether with the free disposal assumption (A.4) and the non-negativity assumption
(A.5), restricting the optimal path to be an element of Gx is justified by (A.3). The
following proposition establishes the equivalence result.
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PROPOSITION 1. Suppose that the assumptions of Theorem 1 hold. Addition-
ally assume (A.2)–(A.5). Then the TVC (3) is equivalent to limt→∞ pt(xt ) = 0.

Proof. To show necessity, use the path 〈(x, v0), (0, v1), (0, v2) . . . 〉 ∈ Gx in
condition (3). It reads as lim supt→∞ pt(xt ) ≤ 0. By (A.4), we have (xt , ut , 0) ∈
�t for all t . Applying condition (2),

∀t ut + pt+1(xt+1) − pt(xt ) ≥ ut + pt+1(0) − pt(xt )

=⇒ ∀t pt+1(xt+1) ≥ 0,

which implies that 0 ≤ lim inft→∞ pt(xt ) ≤ lim supt→∞ pt(xt ) ≤ 0; thus
limt→∞ pt(xt ) = 0.

The converse result holds under (A.5). Suppose limt→∞ p(xt ) = 0. Be-
cause yt ∈ P and pt ∈ P ∗, we have pt(yt ) ≥ 0 for all t . This implies that
lim inft→∞ pt(yt ) ≥ 0. The result follows from the following set of inequalities:

lim sup
t→∞

pt(xt − yt ) ≤ lim sup
t→∞

pt(xt ) + lim sup
t→∞

pt(−yt ) ≤ − lim inf
t→∞ pt(yt ) ≤ 0.

4. NECESSARY CONDITIONS FOR THE OPTIMAL PATH

In this section, we show that a converse result to Theorem 1 exists under some
additional conditions: if a path is optimal, there exists a sequence of linear func-
tionals (i.e., support prices) p ∈ (P ∗)N such that the optimal path solves the
period-by-period optimization problem (2) and its asymptotic behavior satisfies
the TVC (3).

The construction of support prices involves the separation of a feasible set from
a set of paths yielding a higher sum of payoffs. We thus start by stating the well-
known separating hyperplane theorem and proceed through several lemmata. In
what follows, we refer to two convex sets A,B and make several assumptions about
them. The relevant counterparts to these sets and assumptions in our environment
will be introduced later.

THEOREM 2 (Separating Hyperplane Theorem). Let A,B ⊂ S be convex sets
in a normed vector space S. Assume that int(A)∪ int(B) �= ∅ and int(A)∩ int(B) =
∅. Then there is a continuous linear functional q, not identically equal to zero on
S, such that for all x ∈ A and all y ∈ B, q(x) ≥ q(y).

Proof. The reader can refer to p. 133 in Luenberger (1969) for a proof.

As mentioned previously, the objects of interest are in the space V × R. The
next lemma enables us to express a linear functional in this space as a sum of a
functional defined over its subspace V and a real component.
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LEMMA 1. If q : V × R → R is a continuous linear functional, then there
exist a continuous linear functional p : V → R and a real number r such that, if
z = (x, y) ∈ V × R, then q(z) = p(x) + ry.

Proof. Define p(x) = q(x, 0) and r = q(0, 1). Clearly, p : V → R is a
continuous functional because it is the projection of q, which is a continuous
functional, over V . Its linearity is obvious. Also, r ∈ R.

We check that q(z) defined as q(z) = q(x, 0) + q(0, 1)y, where z = (x, y) ∈
V × R is still a continuous linear functional. It is continuous because it is the sum
of two continuous functions. It is a linear functional because for all z1, z2 ∈ V

and α, β ∈ R, the following holds:

q(αz1 + βz2) = p(αx1 + βx2) + r(αy1 + βy2)

= q(αx1 + βx2, 0) + q(0, 1)[αy1 + βy2]

= αq(x1, 0) + αq(0, y1) + βq(x2, 0) + βq(0, y2)

= αq(x1, y1) + βq(x2, y2) = αq(z1) + βq(z2).

The following lemma puts more structure on A and B to obtain a sharper
description of the separating hyperplane.

LEMMA 2. Let B be a convex set with (x, s) ∈ cl(B). Define A = {(x−x ′, s+
s ′) | x ′ ∈ P and s ′ ∈ R+}. Suppose A and B satisfy the conditions of Theorem 2.
Moreover, suppose the following statements about B hold:

∀x ′ ∈V ∃a>0 ∃s ′ ∈R (x + αx ′, s ′) ∈ B, (4)

∃s ′ s > s ′ and (x, s ′) ∈ B, (5)

∃(x ′′, s ′′)∈B s ′′ > s. (6)

Then there exists a separating hyperplane q(x, y) = −p(x)+ry such that p ∈ P ∗,
p �= 0, and r > 0.

Proof. First show that r > 0. Note that (x, s) ∈ A. Take any s ′′ > s. By
definition, (x, s ′′) ∈ A. Take (x, s ′) ∈ B with s ′ < s, the existence of which is
given by (5). We have s ′′ > s > s ′. By Theorem 2, there exists a continuous linear
functional q �= 0 separating A and B, and by Lemma 1, we can represent q as
q(x, y) = −p(x) + ry:

q(x, s ′′) ≥ q(x, s ′),

−p(x) + rs ′′ ≥ −p(x) + rs ′,

rs ′′ ≥ rs ′

=⇒ r ≥ 0.
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Now suppose r = 0. Because q �= 0, it must be that p �= 0. So there is some x̃

such that p(x̃) �= 0.
Define

x ′ =
{

x̃ if p(x̃) < 0,

−x̃ if p(x̃) > 0.

By definition, p(x ′) < 0. By condition (4), there exists (x + αx ′, s ′) ∈ B for
some α > 0. Because (x, s) ∈ A, by Theorem 2,

q(x, s) ≥ q(x + αx ′, s ′),

−p(x) + 0s ≥ −p(x) − αp(x ′) + 0s ′,

αp(x ′) ≥ 0,

which is a contradiction. Hence r > 0.
Now show that p ∈ P ∗. It is sufficient to show that for any (x ′, s ′) ∈ A where

x ′ �= x and s ′ = s, q(x ′, s) ≥ q(x, s), i.e., p(x) ≥ p(x ′).5 Suppose to the
contrary that there exists some (x ′, s) ∈ A with x ′ �= x and p(x) < p(x ′), i.e.,
q(x ′, s) < q(x, s). Denote q(x, s) − q(x ′, s) = δ. Because (x, s) ∈ cl(B) and
(x, s) ∈ A, there is a point (x̂, ŝ) ∈ B such that ∀δ > 0 |q(x, s) − q(x̂, ŝ)| < δ.
By Theorem 2, q(x, s) ≥ q(x̂, ŝ) which implies that q(x, s) − q(x̂, ŝ) < δ. Thus

q(x, s) − q(x̂, ŝ) < δ = q(x, s) − q(x ′, s),

q(x ′, s) < q(x̂, ŝ),

which contradicts Theorem 2.
Finally, suppose that ∀x ∈ V p(x) = 0. Take (x, s) ∈ A and (x ′′, s ′′) ∈ B such

that s ′′ > s. By Theorem 2,

q(x, s) = −p(x) + rs ≥ q(x ′′, s ′′) = −p(x ′′) + rs ′′,

rs ≥ rs ′′,

r ≤ 0,

which contradicts the result r > 0 obtained previously.

We now define the sets At, Bt in our environment:

At = {(xt − ξ, ωt + v) | ξ ∈ P and v ∈ R+},

Bt =
{
(ξ, v) ∈ V × R ∪ {−∞} | ξ ∈ Xt and v = lim inf

T →∞

T∑
τ=t

vτ

for some 〈yτ , vτ 〉∞τ=t ∈ Ft,ξ

}
,
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where 〈xt , ut 〉∞t=0 denotes the optimal path and ωt the continuation value of the

optimal path:

ωt = lim inf
T →∞

T∑
τ=t

uτ .

At is the set of higher continuation values and lower levels of the state variable.
Bt is the set of state and continuation value pairs where the latter can be attained
by a feasible path starting from the former at date t . By construction, the point
(xt , ωt ) is both in At and in Bt for all t . The following assumption about �t

ensures that At and Bt are convex:

A.6. For all t , �t is convex.

In order to apply Lemma 2, we make the following assumptions, which corre-
spond to conditions (4)–(6):

A.7. For all t , ∀x ′ ∈V ∃a>0 ∃s ′ ∈R (xt + αx ′, s ′) ∈ Bt .

A.8. For all t , ∃(ψ, σ ) ∈ Bt s.t. σ > ωt .

A.9. int(P ) �= ∅.

(A.7), the counterpart of condition (4), asserts that the state vector along the
optimal path is not on the boundary of the projection of Bt on its subspace V .
(A.8), corresponding to (6), is an intuitive assumption in a growth model. One
can always find a higher level of capital stock such that a path starting from this
level yields a strictly higher payoff. An analogue of (5) is implied by (A.4). For
any (ξ, v) ∈ Bt , there exists v′ < v such that (ξ, v′) ∈ Bt because one can freely
dispose payoffs.

The last assumption (A.9) ensures that one of these sets At and Bt has a
nonempty interior. Note that At is open when V is the two common state spaces
we encounter: the finite-dimensional Euclidean space and L∞(�,Z, π) space.

We can now apply the separating hyperplane theorem to show that at each t ,
there is a hyperplane supporting Bt at (xt , ωt ) ∈ V × R , i.e., at the state variable
and continuation value of the optimal path. For expositional purposes, Figure 1
illustrates a hyperplane separating the sets At and Bt .

LEMMA 3. Suppose 〈xt , ut 〉∞t=0 ∈ Gx is the optimal path with x0 = x. Suppose
assumptions (A.1)–(A.4) and (A.7)–(A.9) hold. Define ωt and Bt as before. Then,
for each t , there exists some pt ∈ P ∗ with pt �= 0 satisfying

−pt(xt ) + ωt = max{−pt(yt ) + σ | (yt , σ ) ∈ Bt }. (7)

Proof. Note that, for Bt to be well defined for all t , the set Ft,ξ should be
nonempty for some ξ ∈ Xt . This is ensured by (A.1). Thus, Bt �= ∅.



676 A. KEREM COŞAR AND EDWARD J. GREEN

V

Bt

xt

ωt

y

−pt(xt) + ωt = y

R

At

Wt : V → R

FIGURE 1. The separating hyperplane supports the set Bt at the optimal point.

First show that Bt is convex. Suppose it contains two elements (x1
t , ω

1) and
(x2

t , ω
2) with −∞ < ω1 and −∞ < ω2. Define (xα

t , ωα) = [αx1
t + (1 −

α)x2
t , αω1 + (1 − α)ω2] for some 0 < α < 1. By definition of Bt , we need

to show the existence of a feasible path 〈x̃τ , ũτ 〉∞τ=t ∈ Ft,xα
t

satisfying x̃t = xα
t and

ωα = lim infT →∞
∑T

τ=t ũτ .
For the two chosen elements in Bt , there are associated feasible paths

〈x1
τ , u

1
τ 〉∞τ=t ∈ Ft,x1

t
and 〈x2

τ , u
2
τ 〉∞τ=t ∈ Ft,x2

t
implying that (x1

τ , u
1
τ , x

1
τ+1) and

(x2
τ , u

2
τ , x

2
τ+1) are in �τ for all τ ≥ t . Take the path 〈xα

τ , uα
τ 〉∞τ=t defined by

xα
τ = αx1

τ + (1 − α)x2
τ ,

uα
τ = αu1

τ + (1 − α)u2
τ .

By convexity of Xt and �t for all τ ≥ t , we have 〈xα
τ , uα

τ 〉∞τ=t ∈ Ft,xα
t
.6 Note

that this is not necessarily the feasible sequence associated with (xα
t , ωα) because
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of the concavity of the liminf operator:

ωα = lim inf
T →∞

T∑
τ=t

uα
τ ≥ α

(
lim inf
T →∞

T∑
τ=t

u1
τ

)
+ (1 − α)

(
lim inf
T →∞

T∑
τ=t

u2
τ

)
= ωα.

By (A.2), the preceding expressions for ωα and ωα are well defined. If this holds
with equality, 〈xα

τ , uα
τ 〉∞τ=t is the feasible path associated with (xα

t , ωα) and we are
done. Otherwise, define d = ωα − ωα .

Let x̃τ = xα
τ for all τ ≥ t and

ũτ =
{

uα
τ − d for τ = t,

uα
τ for τ > t.

By (A.4), {x̃τ , ũτ } ∈ Ft,xα
t

and it satisfies ωα = lim infT →∞
∑T

τ=t ũτ . This
proves the convexity of the set Bt .

Define At as previously. This set is nonempty because (xt , ωt ) ∈ At . It is
convex. (A.9) implies that int(At ) �= ∅. Hence int(At ) ∪ int(Bt ) �= ∅.

It can be proven by contradiction that int(At ) ∩ int(Bt ) = ∅. Start by noting
that by definition, ωt = sup{v | (xt , v) ∈ Bt }. Suppose, to the contrary, that
(y, v) ∈ int(At ) ∩ int(Bt ). This assumption implies that y ≤ xt and ωt < v.
Because (y, v) ∈ Bt , by (A.4) we have (xt , v) ∈ Bt , contradicting the supremum
property of ωt .

The sets At and Bt satisfy the condition of Theorem 2. There exists a continuous
linear functional qt (·, ·) such that

∀(yt , v) ∈ Bt qt (xt , ωt ) ≥ qt (yt , v).

By Lemma 2, there exists a separating hyperplane with the representation
qt (x, u) = −pt(x) + rtu where rt > 0, pt ∈ P ∗ and pt �= 0. For all t , we
can normalize prices by rt without loss of generality:

∀(yt , σ ) ∈ Bt − pt(xt ) + ωt ≥ −pt(yt ) + σ.

The final assumption to prove the necessary conditions for the optimal path is
the differentiability of the feasibility set Bt at the optimal pair of a state and a
continuation value. To be formal, define the value function for a given state at time
t ,

Wt(yt ) = sup{σ | (yt , σ ) ∈ Bt }.
The time dependence of the value function is due to the potential nonstationarity

of technology. Being the surface of the feasibility set Bt , the function Wt : V → R
is a transformation from a normed linear space V to R. It gives the supremum
sum of payoff streams feasible from a particular state. By (A.3), it is well defined
for all feasible paths. By the principle of optimality, we have Wt(xt ) = ωt . By
convexity of Bt , the function Wt is concave.
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The generalization of differentiability of functions in normed vector spaces is
given by Fréchet differentiability. We will assume that for all t , Wt is Fréchet
differentiable at xt relative to the projection of Bt to its first component. This
derivative coincides with the derivative of the supporting hyperplane with respect
to xt . The linear functional pt : V → R has a derivative at xt denoted by ∇pt(xt ).

Define the projection of Bt on V :

B̃t = {
ξ | ∃v s.t. (ξ, v) ∈ Bt

}
.

A.10. For all t , Wt(.) is Fréchet differentiable at xt relative to B̃t and ∇pt(xt )

is the Fréchet differential of Wt(.) at this point. In other words, for all y ∈ B̃t ,

lim
δ→0+

∣∣Wt [xt + δ(y − xt )] − Wt(xt ) − δ ∇pt(xt ) · (y − xt )
∣∣

δ ‖y − xt‖ = 0.

Differentiability establishes the link between the price functional and the value
function. In Lemma 3, after showing the existence of a price functional (−pt , rt )

supporting the feasibility set at the optimal point, we normalized the price coef-
ficient of current utility rt to unity. The price functional pt : V → R is in terms
of period-t utility. With differentiability, the price functional has an informational
role about the variation of the value of the state around its optimal level.

We finish the section by establishing the necessary conditions for optimality:

THEOREM 3. Suppose 〈xt , ut 〉∞t=0 ∈ Gx is the optimal path for x0 = x and the
assumptions (A.1)–(A.10) are satisfied. Then there exists a sequence of p ∈ (P ∗)N

such that for all 〈yt , vt 〉∞t=0 ∈ F0,y0 with y0 ≤V x and y0 ∈ X0,

∀t, ut + pt+1(xt+1) − pt(xt ) ≥ vt + pt+1(yt+1) − pt(yt ), (8)

and for all 〈yt , vt 〉∞t=0 ∈ Gy0 with y0 ≤ x and y0 ∈ X0,

lim sup
t→∞

pt(xt − yt ) ≤ 0. (9)

Proof. Define At, Bt , and ωt as before. By Lemma 3, for all t , there exists
pt ∈ P ∗ with pt �= 0 satisfying

−pt(xt ) + ωt = max{−pt(ξ) + v | (ξ, v) ∈ Bt }. (10)

For all feasible paths and for all t ≥ 0, we have (yt , lim infT →∞
∑T

τ=t vτ ) ∈ Bt

by definition of Bt . Using this information and the value function Wt as defined
earlier, (10) reads as

∀t ∀yt ∈ B̃t Wt (xt ) − pt(xt ) ≥ Wt(yt ) − pt(yt ). (11)
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Wt satisfies the principle of optimality. For the optimal path and for any other
feasible path the following conditions hold:

Wt(xt ) = ut + Wt+1(xt+1),

∀(vt , yt+1) [(yt , vt , yt+1) ∈ �t =⇒ Wt(yt ) ≥ vt + Wt+1(yt+1)].

Substituting these into (11), we obtain

∀t ∀(yt , vt , yt+1) ∈ �t ut +Wt+1(xt+1)−pt(xt ) ≥ vt +Wt+1(yt+1)−pt(yt ).

(12)
We now show that the sequence of {pt } ∈ (P ∗)N constructed by the price func-
tionals satisfying (10) for all t also satisfies (8) for all t . By way of contradiction,
suppose at some t , there exists a feasible (yt , ut , yt+1) such that

ut + pt+1(xt+1) − pt(xt ) < vt + pt+1(yt+1) − pt(yt ).

Let yε
t = εyt + (1 − ε)xt for ε ∈ (0, 1). Define vε

t and yε
t+1 in a similar fashion.

For ε small enough,

ut + pt+1(xt+1) − pt(xt ) < vε
t + pt+1(y

ε
t+1) − pt(y

ε
t ). (13)

By convexity of the technology set �t , such a (vε
t , y

ε
t , y

ε
t+1) is feasible. Using the

differentiability of W(·) at xt+1 with ∇W(xt+1) = ∇pt+1(xt+1), the following
holds:

Wt+1(y
ε
t+1) = Wt+1(xt+1) + ∇pt+1(xt+1) · (yε

t+1 − xt+1) + o(ε), (14)

where o(ε) is an asymptotically negligible term. By linearity of the price functional
pt+1(.), we have ∇pt+1(xt+1) · (yε

t+1 −xt+1) = pt+1(y
ε
t+1 −xt+1) = pt+1(y

ε
t+1)−

pt+1(xt+1). Then (14) reads as

pt+1(y
ε
t+1) = Wt+1(y

ε
t+1) − Wt+1(xt+1) + pt+1(xt+1) − o(ε). (15)

Substituting pt+1(y
ε
t+1) from (15) into (13), we obtain

ut + pt+1(xt+1) − pt(xt ) < vε
t + Wt+1(y

ε
t+1) − Wt+1(xt+1) + pt+1(xt+1)

− o(ε) − pt(y
ε
t ).

For ε small enough,

ut + Wt+1(xt+1) − pt(xt ) < vε
t + Wt+1(y

ε
t+1) − pt(y

ε
t ),

which contradicts (12). Thus (8) holds for all t .
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To prove the TVC (9), take any 〈yt , vt 〉∞t=0 ∈ Gy0 with y0 ≤V x. Again, by
definition, (yt , lim infT →∞

∑T
τ=t vτ ) ∈ Bt for all t in any such path. By (10),

−pt(xt ) + lim inf
T →∞

T∑
τ=t

uτ ≥ −pt(yt ) + lim inf
T →∞

T∑
τ=t

vτ ,

=⇒ lim inf
T →∞

T∑
τ=t

uτ − lim inf
T →∞

T∑
τ=t

vτ ≥ pt(xt − yt ).

Taking lim supt→∞, the left side is zero because both payoff sequences have
convergent sums by assumption and we get lim supt→∞ pt(xt − yt ) ≤ 0.

Theorem 1 and Theorem 3 jointly characterize the necessary and sufficient
conditions for dynamic optimization.

5. DISCUSSION

We now compare our proof with earlier work. Weitzman (1973) uses an inductive
argument. Starting with the first period, the separation of preferred and feasible
sets in one period leads to the separation of the same sets in the following period
with the payoff maximization condition (8) as an outcome. We separate these sets
period by period (Lemma 3). To derive the intratemporal payoff maximization con-
dition (8) with current and subsequent periods’ state variables, we need additional
assumptions. Our differentiability assumption at the boundary of the feasibility
set helps to link the marginal change in the continuation value of a particular level
of the state variable to its shadow price, thus highlighting the economic intuition
about the role of prices. This is in line with Kamihigashi (2001), who also assumes
the differentiability of the value function.

Also note that under both the sufficient and necessary conditions, transversality
was only established to compare the optimal path to feasible paths with a sum
that is bounded from below (the set Gy0 with y0 ≤V x). This is similar to Michel
(1990), who proves the TVC only for domains with finite loss.

The nonempty-interior assumption (A.9) also seems to be indispensable. Weitz-
man (1973) does not need to assume it because he restricts the analysis to Euclidean
space. In contrast, McKenzie (1974) also makes this assumption in deriving sup-
port prices for weakly maximal paths in an infinite-horizon optimal growth model.
Kamihigashi (2003) directly assumes the existence of an optimal feasible path
because he is only interested in necessary conditions for optimality.

6. THE NO-PONZI CONDITION IN FISCAL PROBLEMS

We finish by demonstrating a useful application of the characterization of opti-
mal paths introduced earlier. Whereas transversality is an optimality condition in
infinite-horizon optimal problems, an analogous mathematical condition, called
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the no-Ponzi condition, is widely used in economics as a constraint on the action
space of agents. For example, in models of fiscal policy, the no-Ponzi condition
appears as a constraint on government borrowing in the limit to prevent overaccu-
mulation of debt:

lim
t→∞

( t−1∏
s=0

1

Rs

)
bt = 0,

where bt is the outstanding bond supply and Rs is the interest rate at period t .
Here we derive the no-Ponzi constraint on government borrowing from the

optimality conditions of households’ savings problem. An outline of this idea was
given by Sims (1994):

Government debt bt cannot be unbounded above, given the bound-
edness of the price level Pt , because of the following transversality
argument: if real debt has non-zero probability of growing arbitrarily
large in an equilibrium with fixed interest rate R and with P bounded
away from zero and infinity, it must eventually get larger than the level
b such that (R − 1)bPmin/Pmax > τ . This level b is high enough
that with certainty the interest rate on it exceed the fixed level of real
taxation τ forever. At such a point, it appears feasible to the agent for
him to reduce his bond holdings back to b and thereafter to consume
at or above some positive minimum level forever...Thus the original
candidate equilibrium path cannot have represented a solution to the
agent’s maximization problem and cannot have been an equilibrium.
(p. 387)

Note that the necessity of the TVC (that is, Theorem 3) is what will be relevant
here. This is distinct from the typical applications of transversality in macroeco-
nomics; for example, most of those in Stokey and Lucas (1989), in which the TVC
is ensured by a model specification involving discounting of a bounded payoff
function, and that fact is used to justify the characterization of an agent’s optimal
behavior in terms of shadow prices or a value function.

Consider an economy populated by a continuum of identical households and
a government. Households are endowed with an initial bond holding of b0 and a
per-period consumption good normalized to unity. They have lifetime utility as a
discounted sum of the instantaneous utility u(c) where the function u(·) satisfies
the usual assumptions.

Households take a sequence of taxes 〈Tt 〉∞t=0 and one-period-ahead interest
rates 〈Rt 〉∞t=0 to be paid on bond holdings as given. The household problem is to
determine the optimal demand for bonds that solves

max
〈bt 〉∞t=1

∞∑
t=0

βtu(ct ),
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subject to b0 and

∀t ct + bt+1

Rt

= 1 − Tt + bt .

We reformulate the problem in the language of our framework. Let
(bt , vt , bt+1) ∈ �t if and only if

vt = βtu

(
1 − Tt + bt − bt+1

Rt

)
,

bt+1 ≤ Rt(1 − Tt + bt ),

and bt ∈ R+ for all t . With a suitable concavity assumption on u(·), the set �t is
convex.

By Theorem 1 and Theorem 3, a path 〈b∗
t , v

∗
t 〉∞t=0 is a solution to this problem

if and only if there exist a sequence of nonnegative prices 〈qt 〉∞t=0 satisfying the
following conditions:

(i) At t = 0,
v∗

0 + q1b
∗
1 ≥ vt + qtb1 for all (b0, v0, b1) ∈ �0.

(ii) At t ≥ 1,

v∗
t + qt+1b

∗
t+1 − qtb

∗
t ≥ vt + qt+1bt+1 − qtbt for all (bt , vt , bt+1) ∈ �t .

(iii) In the limit,
lim
t→∞

qtb
∗
t = 0.

b∗
t maximizes the right-hand-side term in (ii) for all t . The first-order conditions

with respect to bt and bt+1 evaluated at optimum bond holdings are given by

βtu′
(

1 − Tt + b∗
t − b∗

t+1

Rt

)
= qt ,

βtu′
(

1 − Tt + b∗
t − b∗

t+1

Rt

)
1

Rt

= qt+1,

which in turn establish the relationship between shadow prices and the interest
rate:

qt+1 = qt

Rt

.

Letting q0 = 1 without loss of generality, we get

qt =
t−1∏
s=0

1

Rs

.

Using this in the TVC (iii), and imposing market clearance such that the sequence
of bond supply 〈Bt }∞t=1 equals the sequence of bond demand {b∗

t 〉∞t=1 for all t , the
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no-Ponzi-scheme condition follows:

lim
t→∞

( t−1∏
s=0

1

Rs

)
Bt = 0.

NOTES

1. Typically there are constraints, such as non-negativity of capital stocks, on what the state can be.
Those constraints can be represented via the sets �t to be defined later. In a deterministic environment
with finitely many capital goods, it is natural to think of V = Rn with the Euclidean norm. For a
stochastic environment with only one type of capital good (but in which the capital stock will evolve in
a state-contingent manner), it might be reasonable to define the state space V to be L∞(�,B, π), the
space of equivalence classes of B-measurable functions (that is, of random variables) on a probability
space (�,B, π) that are bounded in the essential supremum norm.

2. These functionals have an economic interpretation as prices. If the state space is L∞(�,B, π),
then the intuitively appropriate space of prices in most applications is L1(�,B, π), the space of
functions that are integrable with respect to π . However, the normed-dual space of L∞(�,B, π) is the
larger space of finite measures. Assumptions can be placed on economic models that will guarantee
that the relevant dual vectors correspond to elements of L1(�,B, π); see Bewley (1972), Mas-Colell
and Richard (1991) and Aliprantis and Burkinshaw (2003). We conjecture that such assumptions can
be adapted to the context of the dynamic model studied here, but that topic is beyond the scope of this
paper.

3. In applications, this is proved either by showing recursively that a feasible path of finite length
can be extended, or else by exhibiting an explicit infinite path that is feasible (for instance, completely
to depreciate the capital stock immediately and then to leave it at 0 forever, if it is assumed possible to
survive with 0 consumption).

4. In this regard, note also that in a model of discounted-payoff optimization, ut can be interpreted
as being the payoff discounted to date 0. If there is a bounded function U : V × V → R that satisfies
(xt , ut , xt+1) ∈ �t ⇐⇒ −δtU(xt , xt+1) ≤ ut ≤ δtU(xt , xt+1) for some δ ∈ (0, 1), then the partial
sums in (1) converge.

5. Note that A = {(x′, s′) | x′ ≤ x, s′ ≥ s}. Hence for all such (x′, s), we have (x − x′) ∈ P . Our
claim is that p(x) ≥ 0 for all x ∈ P . Hence we need to show that p(x − x′) ≥ 0 for all (x′, s′) ∈ A,
where x′ �= x and s′ = s.

6. Xt is convex for all t because it is the projection of a convex set, �t , on a subset.
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